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Abstract

We propose here some new sampling algorithms for path sampling in the case when stochastic dynamics are used. In
particular, we present a new proposal function for equilibrium sampling of paths with a Monte-Carlo dynamics (the so-
called ‘‘brownian tube’’ proposal). This proposal is based on the continuity of the dynamics with respect to the random
forcing, and generalizes all previous approaches when stochastic dynamics are used. The efficiency of this proposal is dem-
onstrated using some measure of decorrelation in path space. We also discuss a switching strategy that allows to transform
ensemble of paths at a finite rate while remaining at equilibrium, in contrast with the usual Jarzynski like switching. This
switching is very interesting to sample constrained paths starting from unconstrained paths, or to perform simulated
annealing in a rigorous way.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The behavior of many systems in the fields of physics, chemistry and biology, is dictated by rare but important
transitions between metastable states. Usually, only some local exploration of the metastable sets can be per-
formed, and it is very difficult to study the transitions by resorting to straightforward simulations – using for
example molecular dynamics or kinetic Monte–Carlo. The transition path sampling (TPS) formalism, first pro-
posed in [23] and further developed in [11] (see also [5,13] for extensive reviews), is a strategy to sample only those
paths that lead to a transition. It also gives some information on the transition kinetics, such as the rate constant
as a function of time or the activation energies [10]. Recent practical and theoretical developments (such as tran-
sition interface sampling [34,33]) are still aiming at increasing the power of the method. State of the art appli-
cations of path sampling, such as [3], now involve as much as 3000 atoms with paths about 3 ns long.

Recently, relying on the Jarzynski formula [18,19] (roughly speaking, an exponential average over the
works performed during the switching from an initial to a final state), path sampling techniques have also been
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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used to compute free energy differences more efficiently [30,36,22] by precisely enhancing the paths that have
the larger weights (which correspond to the unlikely lower work values).

Many path sampling studies (especially TPS studies) have used deterministic dynamics (Path sampling in
the NVE ensemble has already been thoroughly studied, see [13] for a review). However, path sampling with
stochastic dynamics is of great interest for nonequilibrium simulations [9]. Besides, some models are stochastic
by nature (see e.g. [1] where the authors consider a model system of protein pulling in implicit solvent, and a
chemical reaction simulated with kinetic Monte-Carlo). Finally, we believe that there is room for improvement
in the path sampling techniques for stochastic dynamics. We therefore restrict ourselves to the stochastic set-
ting in this study.

To this date, the usual equilibrium sampling of paths with stochastic dynamics is done either with the usual
shooting dynamics inspired from the corresponding algorithm for deterministic paths [13]; or with the so-called
‘‘noise history’’ algorithm introduced in [9], which relies on the description of paths as a starting point and the
sequence of random numbers used to generate the trajectory. It is one of our aims here to relate both strategies
and generalize them by introducing a new way to propose paths: namely by generating random numbers cor-
related with the ones used to generate the previous path. When the correlation is zero, the usual shooting dynam-
ics is recovered. When the correlation is one everywhere except for some index along the path where it is zero, the
noise-history algorithm is recovered. This generalization may be useful for example when the dynamics are too
diffusive (Langevin dynamics in the high friction limit) since the shooting dynamics are inefficient in this limit; or
to enhance the decorrelation of the paths generated using the noise history algorithm.

We also consider nonequilibrium sampling of paths, using some switching dynamics on paths [15], inspired
from the now well-known Jarzynski out-of-equilibrium switching in phase-space [18,19]. This switching can be
performed whatever the underlying dynamics on paths. It can be used to transform a sample of unconstrained
paths to reactive paths (ending up in some given region). This approach was already followed in [15], and allows
to compute rate constants. However, the final sample of paths is very degenerate, and cannot be used as a reli-
able equilibrium sample of reactive paths. In the same vein, one could imagine doing simulated annealing on
paths (simulated tempering on paths has already been investigated in [31]), in order to obtain typical transition
paths at temperatures where direct sampling is not feasible. However, unless the annealing process is very slow,
the final sample is usually not correctly distributed. We therefore also present the application to path sampling
of a birth/death process, the so-called ‘‘interacting particle system’’ (IPS), already used in [26] in the field of
molecular dynamics to compute regular phase space properties. This methodology is widely used in the fields
of quantum Monte-Carlo [4,25] or Bayesian statistics, where it is referred to as sequential Monte-Carlo [14].
It allows, through some selection of the paths during the nonequilibrium switching at a finite rate, to precisely
reequilibrate the paths distribution at all times. Such a reequilibration is of paramount importance for the end
sample to be distributed according to the canonical measure on paths. Besides, since the sample of paths follows
the canonical distribution at all times, the properties of interest can be computed in a single simulation for a
whole range of values. For example, the rate constant could be obtained for a whole range of temperatures,
which allows to compute the activation energy following the method presented in [10].

The paper is organized as follows. We first present the path ensemble in Section 2, and turn to equilibrium
sampling of paths in Section 3. We introduce in particular in Section 3.3 the ‘‘Brownian tube’’ proposal func-
tion which generalizes the previous algorithms for path sampling with stochastic dynamics, and compare this
new proposal functions to the previous ones using some two-level sampling indicators (for the local sampling,
see Section 3.4 where an abstract measure of diffusion in path space is introduced). Finally, we present in Sec-
tion 4 the switching dynamics on paths, with the IPS extension enabling a reequilibration of the paths distri-
bution at all times, even when the switching is done at a finite rate (see Section 4.2).

2. The path ensemble with stochastic dynamics

2.1. The canonical measure on discretized paths

We consider a system of N particles, with mass matrix M ¼ Diagðm1; . . . ;mN Þ, described by a configuration
variable q ¼ ðq1; . . . ; qN Þ, and a momentum variable p ¼ ðp1; . . . ; pN Þ. The dimension of the space is denoted
by d, so that qi; pi 2 Rd for all 1 6 i 6 N . We consider stochastic dynamics of the form
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dX t ¼ bðX tÞdt þ RdW t; ð1Þ

where the variable Xt represents either the configurational part qt, or the full phase space variables (qt,pt). The
function b is the force field, the matrix R is the magnitude of the random forcing, and Wt is a standard Brown-
ian motion (the dimension of Wt depending on the dynamics used).

We restrict ourselves in this study to the most famous stochastic dynamics used in practice, namely the
Langevin dynamics
dqt ¼ M�1pt dt;

dpt ¼ �rV ðqtÞdt � cM�1pt dt þ rdW t;

(
ð2Þ
where Wt denotes a standard dN-dimensional Brownian motion, and with the fluctuation–dissipation relation
r2 ¼ 2c=b. In this case, the variable x ¼ ðq; pÞ describes the system and the energy is given by the Hamiltonian
EðxÞ ¼ Hðq; pÞ ¼ V ðqÞ þ 1

2
pTM�1p. Some studies (see e.g. [35]), however, resort to the overdamped Langevin

dynamics
dqt ¼ �rV ðqtÞdt þ

ffiffiffi
2

b

s
dW t;
in which case x ¼ q and EðxÞ ¼ V ðqÞ. The ideas presented in the sequel can of course be straightforwardly ex-
tended to this case.

In practice, the dynamics have to be discretized. Considering a time step Dt and a trajectory length T ¼ LDt,
a discrete trajectory is then defined through the sequence
x ¼ ðx0; . . . ; xLÞ:

Its weight is
pðxÞ ¼ Z�1
L qðx0Þ

YL�1

i¼0

pðxi; xiþ1Þ; ð3Þ
where qðx0Þ ¼ Z�1
0 e�bEðx0Þ is the Boltzmann weight of the initial configuration, pðxi; xiþ1Þ is the probability that

the system is in the state xiþ1 conditionally that it starts from xi, and ZL is a normalization constant. This con-
ditional probability depends on the discretization of the dynamics used. Denoting by 1AðxÞ; 1BðxÞ the indicator
functions of some sets A;B defining, respectively, the initial and the final states, the probability of a given reac-
tive path between the sets A and B is then
pABðxÞ ¼ Z�1
AB1Aðx0Þqðx0Þ

YL�1

i¼0

pðxi; xiþ1Þ1BðxLÞ: ð4Þ
Transition path sampling [11,13] aims at sampling the measure1 pAB, using in particular Monte-Carlo moves
of Metropolis–Hastings type.

2.2. Discretization of the dynamics

We present here a possible discretization of the Langevin dynamics, and the corresponding transition prob-
ability pðxi; xiþ1Þ. This discretization, called ‘‘Langevin impulse’’ [27], relies on an operator splitting technique,
and is more appealing from a theoretical viewpoint than previous discretizations (such as the BBK algorithm
[6], or schemes proposed in [2]). For particles of equal masses (up to a rescaling of time, M ¼ Id; the extension
to the general case is straightforward), the numerical scheme we use here reads [27]:
piþ1=2 ¼ pi � Dt
2
rV ðqiÞ;

qiþ1 ¼ qi þ c1piþ1=2 þ U 1;i;

piþ1 ¼ c0piþ1=2 � Dt
2
rV ðqiþ1Þ þ U 2;i;

8><>: ð5Þ
tice that the measure pAB � pL;Dt
AB depends in fact explicitely on the length of the paths, and of the time steps used in practice.
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with
c0 ¼ expð�cDtÞ; c1 ¼
1� expð�cDtÞ

c
:

The centered gaussian random variables ðU 1;i;U 2;iÞ with U k;i ¼ ðu1
k;i; . . . ; udN

k;i Þ are such that
E½ðul
1;iÞ

2� ¼ r2
1; E½ðul

2;iÞ
2� ¼ r2

2; E½ul
1;i � ul

2;i� ¼ c12r1r2;
with
r2
1 ¼

Dt
bc

2� 3� 4e�cDt þ e�2cDt

cDt

� �
; r2

2 ¼
1

b
1� e�2cDt
� �

; c12r1r2 ¼
1

bc
1� e�cDt
� �2

:

In practice, the random vectors ðU 1;i;U 2;iÞ are computed from standard gaussian random vectors ðG1;i;G2;iÞ
with Gk;i ¼ ðg1

k;i; . . . ; gdN
k;i Þ:
ul
1;i ¼ r1gl

1;i; ul
2;i ¼ r2 c12gl

1;i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

12

q
gl

2;i

� �
: ð6Þ
We will always denote by G standard gaussian random vectors in the sequel, whereas the notation U refers to
non-standard gaussian random vectors.

Denoting by
d1 � d1ððqiþ1; piþ1Þ; ðqi; piÞÞ ¼ qiþ1 � qi � c1pi þ c1

Dt
2
rV ðqiÞ

���� ����;
d2 � d2ððqiþ1; piþ1Þ; ðqi; piÞÞ ¼ piþ1 � c0pi þ

Dt
2

c0rV ðqiÞ þ V ðqiþ1Þ
� ����� ����;
the conditional probability pððqiþ1; piþ1Þ; ðqi; piÞÞ to be in the state xiþ1 ¼ ðqiþ1; piþ1Þ starting from xi ¼ ðqi; piÞ
reads
pðxiþ1; xiÞ ¼ Z�1 exp � 1

2ð1� c2
12Þ

d1

r1

� �2

þ d2

r2

� �2

� 2c12
d1

r1

� �
d2

r2

� � !" #
ð7Þ
where the normalization constant is Z ¼ ð2pr1r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

12

p
Þ�d .

3. Equilibrium sampling of the path ensemble

The most popular way to sample paths is to resort to a Metropolis–Hastings scheme [20,16]. Other
approaches may be considered in some cases, see [13] for a review of alternative approaches. Those approaches
however require some force evaluation (see e.g. [11] for a Langevin dynamics in phase space in the case of a toy
two-dimensional problem). But the force exerted on a path is proportional to rðln pÞ, and is difficult to com-
pute in general since it requires the evaluation of second derivatives of the potential in conventional phase
space.

We first recall the general structure of the Metropolis–Hastings algorithm, and precise some of its specif-
ities, especially when sampling reactive paths. We then recall a usual technique to propose paths in Section 3.2,
and generalize it in Section 3.3. We finally propose some benchmarks to compare the efficiencies of all these
proposal functions.

3.1. Metropolis–Hastings sampling techniques for path sampling

For a probability measure p on the discretized path ensemble (such as (3) or (4)), a Metropolis–Hastings
scheme is defined as a Markov chain with transition probability kernel
P ðx; dyÞ ¼ rðx; yÞPðx; yÞdy þ 1�
Z

rðx; y0ÞPðx; y 0Þdy0
� �

dx; ð8Þ
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where the density rðx; �Þ is given by
rðx; yÞ ¼ min 1;
pðyÞPðy; xÞ
pðxÞPðx; yÞ

� �
: ð9Þ
The function P is the proposal function (It is more commonly called ‘generation probability’ in the field of
molecular simulation). In words, the path y is proposed with probability Pðx; yÞ from x, and accepted with
probability rðx; yÞ, rejected otherwise.

The measure p is by construction an invariant measure of the corresponding Markov chain, and P is the
transition kernel. For all n P 0, P nðx;AÞ is the probability to reach the set A in n steps starting from x (recall
that P nðx; �Þ is a probability measure for all n P 0). If for all x; y, there exists n P 1 such that P nðx; yÞ > 0, and
the chain is aperiodic, then the Markov chain is ergodic [21] (We refer to [7] for an introduction to ergodicity
issues for sampling schemes in the field of molecular dynamics).

The key point in all Metropolis–Hastings schemes is to find an efficient proposal function. In particular,
there is always a trade-off between the acceptance and the decorrelation rate of the Markov chain. Indeed,
if the acceptance rate is low, the obtained sample is degenerate, and not statistically confident. On the other
hand, to increase the acceptance rate, more correlated iterations can be used. In this case the method is more
likely to remain trapped in local minima, and the numerical ergodicity rate may be slow. In many situations,
the optimal acceptance rate is around 1/2. This heuristic rule can be made rigorous in some situations (see e.g.
[24] where the optimal acceptance rate is shown to be 0.574 for a specific Metropolis–Hastings scheme based
on a Euler–Maruyama proposition, in the limit when the dimension of the phase-space goes to infinity).

In the case of reactive paths, a study of the acceptance rate asks to decompose the acceptance/rejection pro-
cedure in two successive steps: (i) the proposition of a path starting from A and going to B; (ii) the acceptance
or rejection of such a path according to the Metropolis–Hastings scheme. The difficult step is the first one,
since paths bridging A and B are only a (small) subset of the whole path space. In particular, diffusive dynam-
ics such as the overdamped Langevin dynamics are often not convenient to propose bridging paths; the situ-
ation is however better for dynamics with some inertia, such as the Langevin dynamics. When the paths are
constructed using deterministic dynamics (NVE case), some studies have shown that the optimal acceptance
rate is about 40% for the cases under consideration [13].

For path sampling with stochastic dynamics, the ‘‘shooting’’ proposal function is classically used [13]. How-
ever, even for moderate values of the friction coefficient c in the Langevin dynamics, this proposal function
may have low acceptance rates, especially if the dimension of the system is high or/and the barriers to cross
are large. An alternative way of proposing paths, relying on the so-called ‘‘noise history’’ of the paths [9] (i.e.
the sequence of random numbers used to generate the trajectory from a given starting point) is to change only
one of the random numbers used and to keep the others. In this case, a high acceptance rate is expected, but
the paths generated may be very correlated.

A natural generalization of both approaches is to rely on the continuity of the dynamics with respect to the
random noise forcing, and to propose a new trajectory by generating new random numbers correlated with the
previous one. We call this approach the ‘‘brownian tube’’ proposal. In this case, an arbitrary acceptance rate
can be reached, and there is room for optimizing the parameters in order to really tune the efficiency of the
sampling.

3.2. The shooting proposal function

The shooting technique described in [13, section 3.1.5] consists in the three following steps, starting from a
path xn:

� select an index 0 6 i 6 L according to discrete probabilities ðwjÞ06j6L (for example a uniform probability
distribution can be considered, unless one wants to increase trial moves starting from certain regions,
for example the assumed transition region);
� generate a new path ðyiþ1; . . . ; yLÞ forward in time, using the stochastic dynamics (2), with a new set of inde-

pendently and identically distributed (i.i.d.) gaussian random vectors ðU nþ1
j Þiþ16j6L�1;
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� generate a new path ðyi�1; . . . ; y0Þ backward in time, using a discretized ‘‘backward’’ stochastic dynamics
corresponding to (2), with a new set of i.i.d. gaussian random vectors ðUnþ1

j Þ06j6i�1;
� set xnþ1 ¼ y with probability rðxn; yÞ, otherwise set xnþ1 ¼ xn.

The ‘‘backward’’ part of the trajectory can be computed using some backward integration (resorting to neg-
ative time steps), but the associated schemes are often unstable [28]. Therefore, a more appropriate method is
to resort to time reversal: The forward dynamics are used to generate the points yi from yiþ1 in a time-reversed
manner. This means that variables odd with respect to time reversal (such as momenta) are inverted, and vari-
ables even with respect to time reversal (such as positions) are kept constant. Denoting by S the reversal oper-
ator, Syi ¼ ðqi;�piÞ when yi ¼ ðqi; piÞ for Langevin dynamics. The usual one-step integrator UDt is then
considered to integrate the corresponding trajectory:
yi ¼ ðS � UDt �SÞyiþ1:
The time-reversed conditional probability �pTRðyiþ1; yiÞ to go from yiþ1 to yi is
�pðyiþ1; yiÞ ¼ �pTRðyiþ1; yiÞ ¼ pðSyiþ1;SyiÞ:

We will always denote in the sequel the random vectors used in this process by �U . The probability of gener-
ating a path y ¼ ðy0; . . . ; yLÞ from x, shooting forward and backward from the ith index, is then
Pðx; yÞ ¼ wk

Yi�1

j¼0

�pðyjþ1; yjÞ
YL

j¼iþ1

pðyj�1; yjÞ: ð10Þ
Notice that the previous path x is present only through the term yi ¼ xi. It then follows:
rðx; yÞ ¼ minð1; 1Aðy0Þ1BðyLÞcexactðx; yÞÞ;

with
cexactðx; yÞ ¼
qðy0Þ
qðx0Þ

Yi�1

j¼0

pðyj; yjþ1Þ
�pðyjþ1; yjÞ

�pðxjþ1; xjÞ
pðxj; xjþ1Þ

: ð11Þ
It is clear that, for reasonable discretizations, P 2ðx; yÞ > 0 for all paths x; y of positive probability (under mild
assumptions on the potential) so that the corresponding Markov chain is irreducible. Since the measure (4) is
left invariant by the dynamics (this is a classical property of Metropolis–Hastings scheme), the corresponding
Markov chain is ergodic [21]. Notice also that it is enough to consider only the forward or the backward inte-
gration steps for the ergodicity to hold, as long as both have a positive probability to occur (and that the pos-
sible asymmetry in the corresponding probabilities is accounted for).

In some cases, the microscopic reversibility ratio
Rrevðyi; yiþ1Þ ¼
qðyiÞpðyi; yiþ1Þ

qðyiþ1Þ�pðyiþ1; yiÞ

is close to 1, so that cexactðx; yÞ ’ 1 and the acceptance–rejection step is greatly simplified. However, this
assumption should always be checked carefully using some preliminary runs since it is sometimes the case that,
even if the reversibility ratio Rrev is close to 1 pointwise (with a good approximation), it may be false that
cexactðx; yÞ ’ 1 along the path, especially if the paths are long (see [28] for a more systematic study of this
point).
3.3. The Brownian tube proposal function

A path can also be characterized uniquely by the initial point x0 and the realization of the brownian process
Wt in (1). When discretized, the paths are then uniquely determined by the sequence of gaussian random vec-
tors U ¼ ðU 0; . . . ;UL�1Þ used to generate the trajectories with (5) (or any discretization of another SDE). This
was already noted in [9], where a new trajectory was proposed selecting an index at random and changing only
the gaussian random number associated with this index.
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Since the trajectory is continuous with respect to the realizations of the brownian motion, any convenient
small perturbation of the sequence of random vectors is expected to generate a path close to the initial path.
Still denoting by pðxi; xiþ1Þ the probability to generate a point xiþ1 in phase-space starting from xi, using the
gaussian random vectors Ui and U i obtained from standard gaussian random vectors Gi and Gi, the transition
probabilities for all classical discretizations we consider can be writtten as
pðxi; xiþ1Þ ¼ Z�1 exp � 1

2
GT

i CGi

� �
; �pTRðxiþ1; xiÞ ¼ Z�1 exp � 1

2
GT

i CGi

� �

where Z is a normalization constant. In the case of the discretization (5) of the Langevin equation for example,
C ¼ V TV where the matrix V allows to recast the correlated gaussian random vectors Ui ¼ ðU 1;i;U 2;iÞ (or U i)
as standard and independent gaussian random vectors Gi (or Gi) through the transformation U i ¼ VGi (or
U i ¼ V Gi) with (see Eq. (7))
V ¼
r�1

1 IddN 0
c12

r1

ffiffiffiffiffiffiffiffiffi
1�c2

12

p IddN
1

r2

ffiffiffiffiffiffiffiffiffi
1�c2

12

p IddN

 !
:

The idea is then to modify the standard gaussian vectors Gi by an amount 0 6 ai 6 1 as
eGi ¼ aiGi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

i

q
Ri; ð12Þ
where Ri is a 2dN-dimensional standard gaussian random vector. A fraction ai is associated with each config-
uration xi along the path. The usual shooting dynamics is recovered with ai ¼ 0 for all i (all the Brownian
increments are uncorrelated with respect to the Brownian increments of the modified path), whereas the so-
called ‘noise history’ algorithm proposed in [9] corresponds to ai ¼ 0 for all i but one i0 for which ai0 ¼ 1
(in this case, all the Brownian increments but one are re-used).

The dynamics we propose looks like the shooting dynamics: first, a position 0 6 k 6 L along the path is
chosen at random; a coefficient ai is then associated to each configuration along the path, and a random gauss-
ian vector is proposed starting from the previous one using (12); finally, the corresponding trajectory is inte-
grated forward from the kth configuration to the Lth, and time-reversed from the kth to the first, and an
acceptance/rejection step is done according to (9).

It only remains to precise the proposition function Pðx; yÞ. Denoting by ðGx
i Þ06i6k�1; ðGx

i Þk6i6L�1 the stan-
dard random gaussian vectors associated with the path x (the first ones arise from the time reversed integra-
tion, the last ones from a usual forward integration), it follows:
Pðx; yÞ ¼ wk

Y
06i6k�1

pai
ðGx

i ;G
y
i Þ

Y
k6i6L�1

pai
ðGx

i ;G
y
i Þ;
where wk still denotes the probability to choose k as a shooting index, and
paðG; eGÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� a2Þ

p !dN

exp �ð
eG � aGÞTðeG � aGÞ

2ð1� a2Þ

 !
:

A tuning of the coefficients ai can then be performed in order to get the best trade-off between acceptance
(which tends to 1 in the limit ai ¼ 1 for all i) and decorrelation (which arises in the limit ai ! 0). An interesting
idea could be that a has to be close to 1 in regions where the generating moves have a chaotic behavior (in the
sense that even small perturbations to a path lead to large changes to this path), and could be smaller in re-
gions where the generating moves have less impact on the paths (so as to increase the decorrelation). From a
more practical point of view, a possible approach to obtain such a trade-off to propose a functional form for
the coefficients ai and to perform short computations to optimize the parameters with respect to some objec-
tive function. Some simple choices for the form of the coefficients ai, involving only one parameter (so that the
optimization is procedure is easier), are:

� constant coefficients ai ¼ a;
� set ai ¼ 1 far from the shooting index, and ai close to 0 near the shooting index. This can be done by con-

sidering ai ¼ minð1;Kji� kjÞ for some K P 0.
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From our experience, the efficiency is robust enough with respect to the choice of the coefficients ai. Notice
also that the second functional form allows to recover both the usual shooting and the noise-history algorithm,
respectively in the regimes K ! 0 and K P 1. It is therefore expected that, optimizing the efficiency with respect
to K 2 ½0; 1�, both the shooting algorithm and the noise-history algorithm should be outperformed.

3.4. Intrinsic measure of efficiency

Our aim here is to propose some abstract measure of decorrelation between the paths, so as to measure
some diffusion in path space. This approach complements the convergence tests based on some observable
of interest for the system. We refer to [13] for some examples of relevant quantities to monitor (and applica-
tions to path sampling with deterministic dynamics), and to Section 3.5 for some numerical results for stochas-
tic dynamics.

The intrinsic decorrelation is related to the existence of some distance or norm on path space. Given a dis-
tance function dðx; yÞ, the quantity
DpðnÞ ¼
Z Z

½dðy; xÞ�pP nðx; dyÞdpðxÞ
� �1=p
(with p P 1) precises the average amount of decorrelation with respect to the distance d for the measure p on
the path ensemble. Notice that two averages are taken: one over the initial paths x, and another over all the
realizations of the Monte-Carlo iterations starting from x (i.e. over all the possible end paths y, weighted by
the probability to end up in y starting from x). In practice, assuming ergodicity, DpðnÞ is computed as
DpðnÞ ¼ lim
N!þ1

1

N

XN

k¼1

dpðxkþn; xkÞ
 !1=p

:

Usual choices for p are p ¼ 1 or p ¼ 2. This last case is considered in [8] since a diffusive behavior over the
space is expected with stochastic dynamics, the most efficient algorithms having the largest diffusion constants
limn!þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðnÞ=n

p
.

It then only remains to precise the distance d, which depends on the system of interest. Some simple choices
are to

� consider a (weighted) norm iÆi on the whole underlying phase-space (for position or position/momenta vari-
ables) and set
dðx; yÞ ¼ 1

L

XL

i¼0

xikxi � yik
p0

 !1=p0

with p0 P 1;
� consider only a projection of the configurations onto some submanifold, such as the level sets of a given

(not necessarily completely relevant) reaction coordinate or order parameter n:
dðx; yÞ ¼ 1

L

XL

i¼0

xijnðxiÞ � nðyiÞj
p0

 !1=p0

;

with p0 P 1.
� align the paths projected onto some submanifold around a given value of the reaction coordinate n:
dðx; yÞ ¼ 1

2K þ 1

XK

i¼�K

xijnðxIþiÞ � nðyJþiÞj
p0

 !1=p0

; ð13Þ

with p0 P 1, and I ; J such that nðxIÞ ¼ nðyJ Þ ¼ n� where n� is fixed in advance (for example, if A is charac-
terized by n ¼ 0 and B by n ¼ 1, then n� could be 1/2). The integer K represents some maximal window
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frame so that the distance is really restricted to a region around the expected or assumed transition point. In
the case when J � K; I � K < 0 or J þ K; I þ K > L, the sum is accordingly restricted to less than 2K þ 1
points.

The weights xi should be non-negative in all cases.
A reasonable choice for non-trivial systems is for example to use (13) with p0 ¼ 1 and xi ¼ 1. This approach

ensures that the decorrelations arising in the initial and final basins A and B are discarded, and that only the
decorrelation arising near the transition region are important. In this sense, we term this decorrelation as ‘local
decorrelation’ since we measure how different the transition mechanisms are. As a measure of ‘global decorre-
lation’, we will consider the transition times. A numerical study based on those lines is presented in Section 3.5.

3.5. Numerical results

We test the different proposal functions on a model system of conformational changes influenced by solva-
tion. We consider a system composed of N particles in a periodic box of side length l0, interacting through the
purely repulsive WCA pair potential [12,29]:
Fig. 1.
interac
V WCAðrÞ ¼
4� r

r

� �12 � r
r

� �6
h i

þ � if r 6 r0;

0 if r > r0;

(

where r denotes the distance between two particles, � and r are two positive parameters and r0 ¼ 21=6r. Among
these particles, two (labeled 1 and 2 in the following) are designated to form a dimer while the remaining par-
ticles are solvent particles. Instead of the above WCA potential, the interaction potential between the particles
in the dimer is a double-well potential
V DWðrÞ ¼ h 1� ðr � r0 � wÞ2

w2

" #2

;

where h and w are two positive parameters. The potential V DW exhibits two energy minima, one corresponding
to the compact state where the bond length of the solute dimer is r ¼ r0, and one corresponding to the
stretched state where the bond length of the solute dimer is rðqÞ ¼ r0 þ 2w. The energy barrier separating both
states is h. Fig. 1 presents a schematic view of the system.

We consider the distance (13) for reactive paths (p � pAB in this case), using p ¼ p0 ¼ 1 and xi ¼ 1,
nðqÞ ¼ jq1 � q2j, n� ¼ r0 þ w. We use the parameters L ¼ 500Dt, b ¼ 1, N ¼ 16 particles of masses 1,
l0 ¼ 1:3, r ¼ 1, � ¼ 1, w ¼ 0:5, Dt ¼ 0:0025, with the sets A ¼ fnðqÞ 6 r0 þ 0:6wg;B ¼ fnðqÞP
rB ¼ r0 þ 1:4wg and averaging over a total of n ¼ 5� 104 Monte-Carlo moves. We set K ¼ 30 since the typical
length of the transitions is about 60 time steps with the parameters used here.

We also consider the correlation in the transition times. We denote by sðxÞ the transition index of some path
x. Here, those indexes s are such that nðqsDtÞ ¼ n�. The correlation function for this observable is therefore, in
the case of reactive paths,
Schematic views of the system, when the diatomic molecule is in the compact state (left), and in the stretched state (right). The
tion of the atoms forming the molecule is described by a double well potential, all the other interactions are of WCA form.
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Fig. 2. Comparison of efficiencies for different Metropolis–Hastings proposal moves for h ¼ 5. Left: Plot of the correlation of the
transition times C(n) (related to some global sampling efficiency). Right: plot of D(n) (local sampling efficiency) for the brownian tube
proposal with a � 0:8 (solid line), usual shooting dynamics (dashed line), and noise history (dotted line).
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CðnÞ ¼
R R
ðsðyÞ � hsipAB

ÞðsðxÞ � hsipAB
ÞP nðx; dyÞdpABðxÞR

ðsðxÞ � hsipAB
Þ2 dpABðxÞ

;

with hsipAB
¼
R

sðxÞdpABðxÞ This observable is in some sense complementary to the measure of decorrelation in
the transition zone defined above since it measures some global spatial decorrelation of the paths. In practice,
assuming ergodicity, C is approximated as
CðnÞ ¼ lim
N!þ1

1
N

PN
k¼1sðxnþkÞsðxkÞ � 1

N

PN
k¼1sðxnþkÞ

� �
1
N

PN
k¼1sðxkÞ

� �
1
N

PN
k¼1sðxkÞ2 � 1

N

PN
k¼1sðxkÞ

� �2
:

Figs. 2–4 present some plots of DðnÞ and CðnÞ for h ¼ 5; 10; 15, for the usual shooting dynamics, the noise-
history algorithm, and the brownian tube proposal (with ai ¼ 0:8 for all i). The average acceptance rates
are also presented in Table 1. Notice that no shifting moves [13] are used in order to compare the intrinsic
efficiencies of the proposal functions. It is likely that these moves would help improving the decorrelation rate
of the sampling.

For the shooting algorithm, many paths are rejected so that the local decorrelation (measured by DðnÞ) is
rather poor, especially at short algorithmic times and for high barriers (in any cases, lower than for the brown-
ian tube proposal). But when a path is accepted, it is already very decorrelated from the previous one, so that
the global decorrelation (measured by C(n)) is indeed decreasing rapidly enough. For the noise-history algo-
rithm, the picture is somewhat inverted: since the acceptance rate is very high, even for high barriers, the local
decorrelation is quite efficient, but the global decorrelation is not since small local changes make it difficult to
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Fig. 3. Comparison of efficiencies for different Metropolis–Hastings proposal moves for h ¼ 10.
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Fig. 4. Comparison of efficiencies for different Metropolis–Hastings proposal moves for h ¼ 15.

Table 1
Acceptance rate (%) as a function of h for the three proposal functions considered

h 5 10 15

Shooting 24.4 18.1 15.2
Noise history 96.7 85.7 81.2
Brownian tube (ai ¼ 0:8) 47.2 48.1 33.0
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change the global features of the paths. The brownian tube approach tries to balance the local and global dec-
orrelations. This is also reflected by a more balanced acceptance/rejection rate.

In conclusion, the brownian tube proposal with the above correlation function is the most efficient sam-
pling scheme in the case considered here. The efficiency could be further increased by a more systematic tuning
of the parameters of the correlation factors ai, possibly depending on the shooting index k. In general, since
the usual proposal functions are specific cases of the brownian tube proposal function, it is expected that there
is always a parameter range such that this new algorithm outperforms the previous ones.

4. (Non)equilibrium sampling of the path ensemble

The previous section was dealing with equilibrium sampling of paths. However, when (free) energy barriers
in path space are large, direct sampling of paths can be inefficient, since the existence of metastable path sets
may considerably slow down the numerical convergence. It is therefore appealing to perform some kind of
simulated annealing on paths. A regular simulated annealing strategy would be to first sample paths at a higher
temperature, and then to cool the sample to the target temperature (see [31] for a simulated tempering version
of such an idea). Reactive paths can also be obtained by constraining progressively the paths to end up in B.
This approach also has the nice feature that it does not ask for an initial guess to start sampling pAB. Finally, a
byproduct of such a switching is the ratio of partition functions in path space
CðLDtÞ ¼ ZABðLDtÞ
ZAðLDtÞ ; ð14Þ
where ZA; ZAB are such that
pAðxÞ ¼ ZAðLDtÞ�1
1Aðx0Þqðx0Þ

YL�1

i¼0

pðxi; xiþ1Þ;
and
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pABðxÞ ¼ ZABðLDtÞ�1
1Aðx0Þqðx0Þ

YL�1

i¼0

pðxi; xiþ1Þ1BðxLÞ
are probability measures. The function C in (14) has to be computed at least once to obtain rate constants in
practice [13]. The associated free-energy difference in path space is DF A!ABðLDtÞ ¼ � lnðCðLDtÞÞ.

We start this section by recalling the extension of the classical switching dynamics for nonequilibrium
dynamics in phase space to nonequilibrium switching between path ensembles [15]. This method is convenient
to compute free energy differences, but the final sample of paths obtained is very degenerate. We therefore
present in Section 4.2 the application to path sampling of a birth/death process introduced in [25,26], which
allows to keep the sample at equilibrium at all times during the switching. This equilibration may be important
in some cases to compute the right free energy values [26], and allows in any cases to end up with a non-degen-
erate sample of paths and reduce the empirical variance. We will focus in the sequel on switching from con-
strained to unconstrained paths, but an extension to simulated annealing (cooling process) is straightforward.

4.1. Switching between ensembles of paths

We present in this section the approach of [15], where the switching from unconstrained to constrained path
ensembles is done by enforcing progressively the constraint on the end point of the path over a time interval
[0,T]. The constraint is usually parametrized using some order parameter. This order parameter is the same as
the one used for usual computations of reaction rates in the TPS framework (and even for more advanced
techniques such as transition interface sampling (TIS) [34,33]). The point is that this approximate order
parameter needs not to be a ‘‘good’’ reaction coordinate (or a complete one) since the general path sampling
approach should help to get rid of some problems arising from a wrong choice of order parameter (see e.g. [32]
for a recent study on this topic).

Assuming an order parameter is given, we can consider a switching schedule k ¼ ðk0; . . . ; knÞ such that
k0 ¼ 0 and kn ¼ 1 and a family of functions hk such that
h0 ¼ 1; h1 ¼ 1B:
We also introduce the family of measures associated with the functions hk:
pkðxÞ ¼ Z�1
L;k1Aðx0Þqðx0Þ

YL�1

i¼0

pðxi; xiþ1ÞhkðxLÞ: ð15Þ
We omit in the sequel the explicit dependence of the partition functions Z on L and Dt. An energy EkðxÞ can
formally be associated to a path x as
pkðxÞ ¼ Z�1
L;ke�EkðxÞ:
The aim is to sample from p1 � pAB, which is usually a difficult task, and sometimes not directly feasible. It
may be easier to use a sample of p0 ¼ pA (which is much easier to obtain), and to transform it through some
switching dynamics into a (weighted) sample of p1. Starting from a path xk;0, the weight factor for a resulting
path xk;n is of the form e�W k;n

where W k;n is the work exerted on an unconstrained path to constrain it to end in
B. We now precise the way the work is computed.

Consider an unconstrained initial path x0 ¼ ðx0
0; . . . ; x0

LÞ sampled according to p0, and a discrete schedule
ðk0; . . . ; knÞ. The dynamics in path space is as follows.

Algorithm 4.1 (See Ref. [15]). Starting from W 0 ¼ 0 and m ¼ 0,

� Replace km by km+1.
� Update the work as W mþ1 ¼ W m þ Ekmþ1ðxmÞ � EkmðxmÞ.
� Do a Monte-Carlo path sampling move using a Metropolis–Hastings scheme with the measure pkmþ1

(using
for example the usual shooting moves with a Langevin dynamics, or the Monte-Carlo move designed for
path switching presented in Appendix A), so that the current path xm is transformed into the new path
xm+1.
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This procedure is repeated for independent initial conditions xk,0, so that a sample of M end paths
ðx1;n; . . . ; xM ;nÞ with weights ðe�W 1;n

; . . . ; e�W M ;nÞ is obtained. Besides, an estimation of the rate constant is given
by the exponential average
CMðLDtÞ ¼ 1

M

XM

k¼1

e�W k;n
;

and it can be shown that CM ! C when M ! þ1.
Since the realizations of the switching procedure are independent provided the initial conditions are inde-

pendent, the random variables fe�W k;ngk are i.i.d. A confidence interval can be obtained for CM as
C�M ;rc
6 CM 6 CþM ;rc

; with C	M ;rc
¼ 1

M

XM

k¼1

e�W k;n 	 rc

ffiffiffiffiffiffiffi
V M

M

r
;

where the empirical variance is
V M ¼
1

M

XM

k¼1

e�W k;n � 1

M

XM

l¼1

e�W l;n

 !2

:

A confidence interval on the free energy difference is then
� ln C�M ;rc
6 DF A!AB 6 � ln CþM ;rc

:

For example, the 95% confidence interval corresponds to rc ¼ 1:96.
Of course, it may the case that the variance of the work distribution is large, so that only very few paths are

relevant (and the confidence interval for the free energy difference is large). Therefore, most computational
effort is discarded in the end. A method enabling an on the fly sorting out of the irrelevant would be an inter-
esting improvement of the method. Such a procedure could also concentrate the efforts on important transi-
tion tubes. The interacting particle systems (IPS), already used in the context of nonequilibrium free energy
differences [26], is such an approach.

4.2. Enhancing the number of relevant paths

We present here an extension of a birth/death process, introduced for equilibrating a simulated annealing
process done at finite rate (and therefore out of equilibrium), to the case of path sampling. This procedure can
be seen as a time continuous resampling, and avoids the degeneracy of the paths weights (see also the related
population Monte–Carlo algorithms [17]). The idea of IPS is to switch several paths in parallel, and to attach
exponentially distributed birth and death times to each path. The death time of the path is decreased when the
work exerted on it is higher than the average work; when this time is zero, a new exponentially distributed
death time is generated, the path is suppressed, and replaced by another path picked up at random among
the other paths. The birth time of the path is decreased when the work exerted on it is lower than the average
work; when this time is zero, a new exponentially distributed birth time is generated, another path picked up at
random is suppressed, and is replaced by the path giving birth. In all cases (birth or death), the works attached
to a path are kept. We refer to [26] for a proof of the consistency of the method.

Algorithm 4.2. Consider an initial distribution ðx1;0; . . . ; xM ;0Þ generated from p0. Generate independent times
sk;b; sk;d from an exponential law of mean 1. Consider two additional variables Rk;b;Rk;d per replica, initialized
at 0.

� Replace km by km+1.
� Update the works as W k;mþ1 ¼ W k;m þ DEk;m ¼ W k;m þ Ekmþ1ðxk;mÞ þ Ekmðxk;mÞ, and compute the mean work

update DEm ¼ M�1
P

16k6MDEk;m.
� (Diffusion step) Do a Monte–Carlo path sampling move using a Metropolis–Hastings scheme with the mea-

sure pkmþ1 , so that xk,m is transformed into xk,m+1.
� (Birth/death process) Update the variables Rk,b and Rk,d as
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Rk;b ¼ Rk;b þ ðDEm � DEk;mÞ�;

and
Rk;d ¼ Rk;d þ ðDEm � DEk;mÞþ:

(Death) If Rk;d P sk;d , select an index m 2 f1; . . . ;Mg at random, and replace the kth path by the mth path.
Generate a new time sk;d from an exponential law of mean 1, and set Rk;d ¼ 0.
(Birth) If Rk;b P sk;b, select an index m 2 f1; . . . ;Mg at random, and replace the mth path by the kth path.
Generate a new time sk;b from an exponential law of mean 1, and set Rk;b ¼ 0.

Then, each path has weight 1 in the end, and the final sample ðx1;n; . . . ; xM ;nÞ is distributed according to
p1 � pAB (provided the switching is slow enough). In this case, an estimation of the rate constant is given
by the simple average
CMðLDtÞ ¼ 1

M

XM

k¼1

W k;n;
and it can be shown that CM ! C when M ! þ1. A confidence interval for the free energy difference can be
obtained as in Section 4.1 as
CIPS;�
M ;rc

6 CIPS
M 6 CIPS;þ

M ;rc
; with CIPS;	

M ;rc
¼ 1

M

XM

k¼1

W k;n 	 rc

ffiffiffiffiffiffiffiffiffi
V IPS

M

M

s
;

the empirical variance being
V IPS
M ¼ 1

M

XM

k¼1

W k;n � 1

M

XM

l¼1

W l;n

 !2

:

4.3. Numerical results

We compute here free energy differences associated with constraining paths for the WCA model system
introduced in Section 3.5. This is done either with plain nonequilibrium switching, or with the IPS equilibra-
tion. Let us notice that the energy is fixed in [15] while we rather have to fix the temperature in the stochastic
setting, so that a straightforward comparison of the results is not possible. We set b ¼ 1 in the sequel. The
other parameters are the same as in [15]: N ¼ 9 particles, h ¼ 6, r ¼ 1, � ¼ 1, the particle density
q ¼ 0:6r�2, w ¼ 0:25, and the sets A ¼ fnðqÞ 6 nA ¼ 1:3rg;B ¼ fnðqÞP nB ¼ 1:45rg. The trajectory length
is L ¼ 320Dt and Dt ¼ 0:0025, so that LDt ¼ 0:8ðmr2=�Þ1=2.

We perform a total of n MC moves (using the brownian tube proposal function with ai ¼ a ¼ 0:8 for all
0 6 i 6 L� 1). The function hk is the one given in [15]:
hkðqÞ ¼ e�kKð1�1BðqÞÞðnB�nðqÞÞ
with K ¼ 100. The switching schedule is ki ¼ ði=nÞ2.
A typical free energy difference profile is presented in Fig. 5 for M ¼ 2000 and n = 10,000, as well as the

associated weights for the plain nonequilibrium switching. These weights are the Jarzynski weights renormal-
ized by the total weight (in order to define a probability distribution):
wk ¼
e�W k;nPM
l¼1e�W l;n

: ð16Þ
Notice that the sample is very degenerate since very many paths have negligible weights, and the relevant paths
are exponentially rare. Recall also that the paths all have weight 1 with the IPS algorithm.

Some free energy differences are presented in Table 2 for different values of n (keeping M fixed). The switch-
ings are slow enough when the confidence intervals for free energy differences computed by constraining paths
(‘forward’ switching) overlap with confidence intervals for free energy differences obtained by starting from a



Table 2
Free energy differences DF A!AB computed for different switching lengths n, using a sample of M ¼ 2000 paths

M n Backward Forward IPS (forward)

2000 2000 4.83 (4.61–5.02) 5.43 (5.28–5.61) 4.82 (4.78–5.85)
2000 5000 5.34 (5.04–5.58) 5.41 (5.32–5.50) 5.19 (5.16–5.23)
2000 10000 5.45 (5.32–5.58) 5.40 (5.34–5.46) 5.40 (5.36–5.43)
2000 15000 5.42 (5.35–5.49) 5.40 (5.35–5.45) 5.45 (5.42–5.48)

The results are presented under the form ‘‘CM ðC�M ;rc
� CþM ;rc

Þ’’ with rc ¼ 1:96 (the value corresponding to a 95% confidence interval).
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Fig. 5. Left: Free energy profile for a forward switching, computed for M ¼ 2000 and n ¼ 104, using a plain nonequilibrium switching.
Right: Histogram of the weights wk of the final sample as given by (16).

G. Stoltz / Journal of Computational Physics 225 (2007) 491–508 505
sample of constrained paths and removing progressively the constraint (‘backward’ switching). This is the case
here for n ¼ 5000; 10; 000; 15; 000 (but not when n ¼ 2000). The results show that IPS agrees with the usual
Jarzynski switching, the confidence interval on the results being however lower.

We also present in Fig. 6 a final sample computed using a quite fast switching (n ¼ 1000) with a small sam-
ple of paths (M ¼ 100). Notice that all the 100 paths generated with the IPS switching are reactive, in contrast
with the paths generated by a straightforward switching in the Jarzynski way. Besides, as a consequence of the
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Fig. 6. Comparison, for a nonequilibrium switching of paths for M ¼ 100 systems in n ¼ 1000 steps without (Left) or with IPS (Right).
Only the paths having a weight greater than 0.05 are plotted in solid lines when plain nonequilibrium switching is used (the other paths are
plotted in dotted lines).
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degeneracy of paths, only 8 paths in 100 have a significant weight (larger than 0.05 when normalized by the
total weight, see (16)). This simple example shows why it is difficult to compute averages over the final sample
of paths when performing plain nonequilibrium switching, and why it may be interesting to resort to some
selection process to prevent such a degeneracy.

In agreement with a previous study [26], the results show that the IPS algorithm allows to reduce the var-
iance on the estimates and to end up the simulation with a well-distributed and non-degenerate sample, pro-
vided the switching is slow enough.
5. Conclusion and prospects

In conclusion, we have presented here some new algorithms for path sampling with stochastic dynamics,
either for equilibrium sampling of the path ensemble, or nonequilibrium sampling. In the latter case, it is pos-
sible to perform simulated annealing in a rigorous manner instead of performing simulated tempering; or to
switch from a sample of unconstrained paths to a sample of constrained paths, and compute the associated
ratio of partition functions.

The brownian tube proposal used for equilibrium sampling is a simple generalization of the previous
approaches, and can therefore always be used as a shooting algorithm with only minor modifications to exist-
ing TPS algorithms. A systematic criterion for setting the correlation factors faigi would be to consider simple
analytical forms as proposed at the end of Section 3.3, and choose faigi to obtain balanced acceptance/rejec-
tion rates or, when some specific observable has to be computed, to optimize the parameters to obtain the best
convergence results (on some preliminary computations). However, for simulations of large systems using long
paths, the brownian tube approach may be impossible to use because of the limited numerical precision and
the chaotic behavior of the system: indeed, starting from a given path, it is not clear whether this path can be
recovered by first computing the random vectors associated with the trajectory, and then integrating this tra-
jectory again starting from the initial point.

The equilibration of the nonequilibrium switching dynamics is very intesting to reduce the variance of free
energy computations when switching from unconstrained to constrained paths, or to obtain well-distributed
ensemble of paths in the end (which is of paramount importance for the correctness of a simulated annealing
procedure for example). However, the switching still has to be done slowly enough and using a number of
replicas large enough. Once again, this may be problematic for very large systems.

It would be interesting now to extend the switching procedure to TIS [34,33], where the length of paths is
not constant, but which is naturally sequential in the way computations are done in practice: indeed, the flux
through the next intermediate interface is computed using a sample of paths crossing the previous interface
(this is the major difference with the forward flux techniques of [1] where only points on the previous interface
are kept).
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Appendix A. Specific Monte–Carlo moves for switching from unconstrained to constrained path ensembles

When an interpolating function hk appearing in (15) (or, equivalently, some order parameter n) is known, it
is possible to increase the likeliness of the end point of the trajectory by performing a move on the last con-
figuration in the direction opposite torhkðqÞ, while keeping the random vectors used for the transitions. These
moves should of course be employed with other MC moves, especially MC moves relying on some trajectory
generation, in order to relax the shift toward higher values of hk or n.
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More precisely, using for example an overdamped Langevin dynamics to update the end configuration, the
associated Metropolis–Hastings Monte–Carlo elementary step is, starting from a path x for a parameter k (in
the Langevin dynamics setting):

Algorithm 5.1. Starting from a path x ¼ ðx0; . . . ; xLÞ,

� Compute the sequence of 2dN-dimensional random vectors ðU iÞ06i6L�1 associated with the backward (time-
reversed) integration from xL to x0.
� Compute a final configuration as yL ¼ xL þ dkrnðqÞ þ ð2dk=bÞ1=2G, where G is a dN-dimensional random

gaussian vector.
� Integrate the path backward (time-reversed) starting from yL, using the noises ðUiÞ06i6L�1 to obtain a path

y ¼ ðy0; . . . ; yLÞ. The probabilty Pðx; yÞ to obtain y starting from x is therefore the probability to obtain yL

from xL, so that
Pðx; yÞ ¼ pswitchðxL; yLÞ ¼
b

4pd2
k

 !dN=2

exp � b

4d2
k

jyL � xL � dkrnðqÞj2
 !

:

� Accept the new path y with probability
rðx; yÞ ¼ min 1;
pðyÞPðy; xÞ
pðxÞPðx; yÞ

� �
¼ min 1;

1Aðy0Þqðy0Þ
1Aðx0Þqðx0Þ

pswitchðyL; xLÞ
pswitchðxL; yLÞ

� �
:

The magnitude dk can be made to depend a priori on k. It is then adjusted in practice on the fly by first com-
puting the values of the gradient for the endpoint of each replica, in order to ensure that the displacement is
small enough.
References

[1] R.J. Allen, D. Frenkel, P. Rein ten Wolde, Simulating rare events in equilibrium or nonequilibrium stochastic systems, J. Chem. Phys.
124 (2) (2006) 024102.

[2] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1987.
[3] J. Juraszek, P.G. Bolhuis, Sampling the multiple folding mechanisms of Trp-cage in explicit solvent, PNAS 103 (43) (2006) 15859–

15864.
[4] R. Assaraf, M. Caffarel, A. Khelif, Diffusion Monte Carlo with a fixed number of walkers, Phys. Rev. E 61 (4) (2000) 4566–4575.
[5] P.G. Bolhuis, C. Dellago, P.L. Geissler, D. Chandler, Transition path sampling: throwing ropes over mountains in the dark, Annu.

Rev. Phys. Chem 53 (2002) 291–318.
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